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ROBUST LINEAR FILTERING FOR MULTIVARIABLE STATIONARY TIME SERIES

Haralampos Tsaknakis and P. Papantoni-Kazakos
University of Connecticut
U-157
Storrs, Connecticut 06268

Abstract

;) The problem of asymptotic, non-causal linear filtering for statistically
contaminated multivariable stationary time series is considered. The spectra
of both the signal and the noise components of the observation process are
assumed to belong to certain convex and compact classes. The minimax criterion
of optimality is adopted, and for some specific spectral classes the corres-
ponding solutions are found. The performance of those solutions is studied,
where the performance criteria used are efficiency, error variation within the

classes, and breakdown curves or points. Some examples are studied quantij%vely.
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1. Introduction

We consider non-causal filtering for stationary information processes embedded
in additive noise. The problem and its solution are well established when both
the information and noise processes are statistically well-known, stationary, and
mutually uncorrelated. The reader may refer to the work by Kolmogorov [4], and
to the books by Wiener [9] and Hannan [2]. Let us now assume that the information
and noise processes are statistically contaminated. Then, a single non-causal

filter is sought that will provide satisfactory performance for every information

:k- process-noise process pair, within the statistically contaminated classes. If k

satisfactory performance implies qualitative robustness, then a nonlinear opera- 4
- k
- tion on the data of the information process should be in general imposed, before d

- transmission through the noise channel. Such a stationary nonlinear operation maps

a compact class of stationary processes onto another compact class of stationary

F IR RIAIIR

- processes. If the nonlinear operation is appropriately designed, a linear filter will
maintain the characteristics of qualitative robustness. For qualitative analysis of
the above, the intérested reader may seek reference [6]. From now on we will assume
that a ﬁroper nonlinear operation has been adopted, and we will concentrate on the
stationary processes induced by this operation and the class of information processes.
i We will name those induced processes, information processes. We will assume that the

noise process lies within another compact class of stationary processes, and that the

Ei members of this class and the members of the class of information processes are mutually
. uncorrelated. Then, we will focus on the design of a robust linear filter, adopting a
;: saddle point game theoretic approach. We point out here that the same approach was
;Q adopted in [8], where noiseless robust prediction and interpolation of multivariable
-“ stationary processes was considered. Also, considering robust linear filtering for
| if scalar, stationary information and noise processes, the interested reader may seek

- references [3] and [7]).
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In the present paper, we consider the robust linear non-causal filtering
problem, for multivariable stationary information and noise processes. We adopt
asymptotic linear operations, and we formulate the problem as a game with saddle
point solution. We find this solution explicitly, when the information and noise
processes lie within either one of two compact classes of multivariable stationary
processes. One of the compact classes represents linear cqntamination of a nominal
multivariable process. The other class includes multivariable processes with fixed
energy on prespecified frequency quantiles.

The organization of the paper is as follows. In section 2, we formulate the
problem, and we define the compact classes of multivariable stationary processes.
In seetion 3, we find the robust solution, when the compact classes for ihe infor-
mation and the noise processes both represent linear contamination of a nominal
multivariable process. In section 4, we find the robust linear filter when one of
the compact classes represents linear contamination of a nominal multivariable
process, and the other compact class includes processes with fixed energy on pre-
specified frequency Quantiles. In section 5, we find the robust linear filter,
when both the compact classes include processes with fixed energy on prespecified
frequency quantiles. In section 6, we present some criteria for the performance
evaluation of the robust filters in sections 3, 4, and 5, and we use those criteria

to study the performance of the robust filters in some specific examples.




- T " e T eI

WIS WOA A" AL S B ARSI RS SRS Rt LS
h TNTRT TR A

§ R

2. Problem Formulation

We consider the asymptotic non-causal linear filtering problem for stationary
multivariable time series, when the statistical structure of both the information
.- and the noise processes is vaguely or incompletely specified. We assume that the
noise process is additive to the information process, and that the two processes

l are zero mean and mutually uncorrelated. Let Xn(j) 3y j=...,-1,0, 1, ... denote

VRS SR S LT 2T

a sequence of n-dimensional data vectors from the multivariable information process.

FEOSNS IV - KRR

n
’
a3

Let Yn(j) 3 3=..., -1, 0, 1,... denote such a sequence from the noise process.

T D

Then, the observation data sequence Zn(j) 3 = eeey =1, 0, 1, ... is such that

Zn(j) = Xn(j) + Yn(j) 3 ¥ j, and the noncausal linear filter performs the operation
- 2 Akn z™(k) to extract the vector X"(0); where {A:} is some sequence of constant
::n matrices (whose properties will be stated later), such that in the frequency
domain the matrix polynomial En(w) e k_z:oAE ej kaw exists, and it describes the

linear filter uniquely. In the parame;ric linear filter problem, the information
and noise processes are considered well-known. Then, if the spectral density matrices
of both those processes exist (as in [8]), and they are denoted respectively by
5:(00) and _f_;;(w), they are both Hermitian and nonnegative definite, and their
elements are Lebesque integrable functions on the measurable space ([-m,T], B");

where B" the Borel field on [-7,w]. If the asumptotic non-causal linear filter

signified by B_n(w) is adopted, and the mean square performance criterion is con-

sidered, it is then well-known [2] that the error e(_g: s _g;, gn) induced is given

by the following expression.
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E X ; where tr means trace, * and T signify conjugate and transpose respectively, and
NEEE

K = I is the nxn identity matrix.
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‘ij From expression (1) we observe that the mean square error e(f ’ —N’ H ) is only

! a function of the spectral density matrices of both the information and noise processes.
ll Thus, if we now assume that the statistical structure of the information and noise

L processes is incompletely specified, we can represent this incompleteness solely by
uncertainty in the description of the spectral density matrices g:(w) and ;;(m). We
ll will formulate our approach below. We will also drop the index n, for simplicity in
i our notation.
Let the spectral density matrixlgs(w) of the information process belong to a
-— class Cs. Let the spectral density matrix jN(w) of the noise process belong to a class
CN. Let the members of each class be Hermitian, nonnegative definite matrices, defined

on the interval [-m,7], containing no impulses anywhere on [-7,m], and being nonsingular

for all we[-w,m]. The no impulses and nonsingularity restrictions do not cause serious
EE loss in generality, and they can be relaxed if necessary. If impulses exist at a
" finite number of points, they can be approximated by Gaussian functions with arbitrarily
. small variances. If singularities exist, each can be analyzed separately via lower rank

- matrices. Let Sf be the class of linear filters whose matrix coefficients {Ak} are the
Laurent series expansion coefficients of a holomorphic matrix valued function, within

ll an annulus containing the unit circle in the complex plane. Then, each member'{Ak}

. in Sf is uniquely described by the matrix polynomial H(w) = ;Z;w Ak ejkw’ in the

. frequency domain. Let us consider the space S of all matrices defined on [—ﬂ,ﬂ];

&  Then, for A(w)eS and B(W)eS we define the metric:

. - * * .
- aca,B) & tr(2m lf (ACw)-B(w) 1A (@) -B (W) 1T du (2) >
-~ _-n- :!
: RN
¥: The class Sf of linear filters is convex and locally compact with respect to .

the metric in (2). We will consider classes Cs and CN that are also convex and

goo8
.

locally compact with respect to the metric in (2). Consider now a game on (CstN)xSf,

with payoff function e(ﬁs, gN,'g); where the latter is the error expression in (1).

.,
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5
The game has a saddle-point solution (f £° Ho) where f2¢ C, £2e€C, and B® € S
? _N’ 4 —s s' __N N’ f’
iff:
o
e(f tQN,H ) < e(gs,f H ) < e(£° *—N’H) ;s ¥ g;Sf, v(f ’—N) e C xC (3)

If a saddle point solution exists, we will name g? the robust filter. But the error

function e(f H) in (1) is clearly linear with respect to £, and £, and it is

’__N’
convex with respect to H. Then, a saddle point solution always exists [5]. Further-

more, if (g: £2 g?) is such a solution, then:

_N’
o 0 .0
e(f, £., H) = dnf sup e(f , £., H) =
_s, _N — ] __N —
BeSg (£, 5060 xCy
= gup inf e(f » £y H) (4)
(£5,£0€CoxCy BeS,
Let us define.
e (£, £) & inf e(e, £, B (5)
m—s’ =N i
HeS
—f
Then, we have directly from [2].
U ' il
e (£,£) = tr2M Y] £ @I @+ 17T £ @avetr2m) Y £ w4 w) 1w
m —s’~N 1T =s =S N =N -8 =N
~Tr . -7

(6)

-1
attained for H(w) = ;s(w)[gs(w)ﬁgﬂ(w)] ; for almost all w in [-m,w].
Thus, for the solution of the saddle-point game, it is equivalent to search for the
th i f .
supremum of the expression em(_s, fﬂ) on CS x CN It is easily observed that
f
em(gs’ -N

As in [8], we will conside: the following two classes of spectral demsity

) is concave with respect to both £ and f .
—s -N

matrices that are bot. .uv'ver iand locally compact with respect to the metric in (2):

.........

................
................
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F, ={f(w): f(w) = (l—e)go(w) +¢ hw) ; wel-m,7]
; where € given and such that : 0 < € <1
jb(m) well-known positive definite Hermitian matrix
h(w) nonnegative definite Hermitian matrix satisfying the energy

T
constraint: (2m) tr[ h(w)dw < W; for given W}
-T

™
F ={f(w): trj f@dw = ey 54 =1,...k, tr J. f(waw = ¢
Ag -T
; where {Ai} measurable disjoint subsets of [-m,m],

k k
U Aic:[—ﬂ,ﬂ], c > E: ci,_g(w) positive definite Hermitian matrix}
i=1 i=1

Class FL e represents linear €-contamination of a nominal spectral density
?

matrixigo(w). Class FQ includes spectral density matrices whose energy is fixed within

prespecified frequency quantiles. Both classes satisfy the necessary topological

properties, for the existence of a solution for the game in (3). In the subsequent

sections, we will find the solutions of the game, for the following three cases:

i. C =F and C_ = F
s L,ss N L,EN
ii. Cs = FL,e and CN = FQ’ and conversely
iii. Cs = FQ and CN = FQ
3. The Game Solution on F. x F
Le " 'L,

In the present section, we consider the case where Cs = FL e’ with energy
»~8S

constraint W , and C_= F ; with energy constraint W . As we saw in section 2,
s N L,EN N

both the Cs and CN classes are then convex and locally compact with respect to the

metric in (2), and then the game reduces to obtaining the supremum of the expression

5 6 F Foo.
o em(gs, SN) in (6), on L,eg ¥ FL,eN Let Eos(w) and gON(w) be the nominal spectral
densities in the classes F and FL ¢ respectively. Let,

‘:' L,Es ’ N

B . < . e T 3 N )
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7
m
-1
(2m) ~ tr j jos(w) dw = wos
-T
(7
m
-1
2 t £f (W) dw =
-7
Then, the solution of the game on F x F reduces to the followirg optimization
L,eg L,ey
problem.
Find the supremum of
m
A -1 -1 -1 -1
e (£.,,£) = (2m tr[ (£, W+ (W] ™ dw
T
subject to the constraints:
f(w-Q-e) f (w>0 (34)
s s’ ~os

‘;N(w) - () £ W) >0

ne>

T
trj f (W) dw < 271 [(1-e ) W +¢ W]
-s - S oS S [

-

ne>

W
N N]

m
tr f _g_N(w) dw < 2w [(1-—eN) woN +¢€
-
; where if B(w) is a matrix defined on [-m,7m], B(w) > O means nonnegative definite
for all w in [-m,7].
The expression em(gs, _f_N) in the optimization problem in (3A) involves explicitly
both the eigenfunctions and the -eigenvectors of the spectral densitiy matrices £s(w)
and iN(w); for all w in [-m,7m]. This induces complications in the optimization process.

Those complications can be resolved, however. In particular, we will first derive an

ﬂf

ek B SR VN R e
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upper bound on em(gs, SN)’ that involves eigenfunctions only. Then, we will find the
supremum of this upper bound, and we will show that this supremum is attained for any
eigenvectors. To formulate our approach, we will first present a lemma, and two

corollaries. We will then apply the lemma and the corollaries to the problem in (3A).

Lemma
Let m be a positive measure defined on a measurable space ({, F). Let AcF, and

let f, g be two real functions mapping A onto the real line R. Let f and g be also

integrable on A and such that f+g > 0, a.e. in A. Then,
ffdm_ g dm

fg A A
/f+g dmf—ff dm+J‘gdm
A A A

with equality if and only if f = cg, a.e. in A, for some constant c.

Corollary 1
For any real numbers X0 Vg3 i=1,...,n, such that x4 + Yy > 0; ¥i, the following

#nequality holds,

> % - 3
n X hd y
Z XY B N 1
x.+y. — n n
1774
i=1 2 *; + Yi
i=1 i=1

X x
with equality 1iff B S | s Vi#j.
7R

The proof of the lemma is in the appendix. The result in corollary 1 follows from

n
the lemma, the definition of a set {Ai} such that AiflAj =g %itj3, U Ay = A,

n n j=1
and for f = ;g; Xy 1Ai and g = Eg; Yi lAi; where 1Ai the indicator function of A

4
»
-l
.‘f
9
T4
4
'
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Corollary 2

Let A and B be two nxn Hermitian and positive definite constant matrices. Let
_I . {3;(a); 1 < 1 < n} and {x;(B); 1 < i < n} be the sets of their ordered eigemvalues;
that is, )\i(A) > 7\1+1(A) and A, (B) > )\i+l(B), for all i. Then, the following

inequality holds,

-1

-1 n n
er (71 + 87 5_([2 J\i(A)] -1 [Z Ai(B)] -1 )
i=1 . i=1

3 with equality if and only if A = cB, for some scalar constant c.

v . r

]

RPN ATV
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The proof of corollary 2 is in the appendix, and it evolves from the lemma.

We will now apply the lemma and the two corollaries to the optimization problem

%
£ oo
F

(3A). Let us consider the nxn spectral density matrices gs(w) and £N(w)° Since both
the nominal spectral density matrices ios(w) and _gou(w) in (3A) have been agsumed
positive definite; for all w in [-m,7], and due to the nonnegative definite comstraints
in (3A), the spectral density matrices gs(w) and £N(w) are positive definite for all w
in [-7,7]. They are also Hermitian. Let us temporarily fix w, and let us demote by
{Ais(w); 1<4i<n} and {AiN(w); 1 < i < n} the sets of ordered eigenfunctions for

the mat.rices _f_s(w) and _f_N(w) respectively; where Ais(w) > A

,s(w) and A (@) > A (w) ;%1

i+l i+1,N
and ¥ we[-7m,7]. Then, the matrices _f_;l(w) and _f_;l(w) are also Hermitian and positive definite,

and their respective sets of ordered eignefunctions are {)\;i(w); 1 <1< n}and

S -1 -1 -1 -1 -1

. : 1 <4< s > >

E, = (@35 1 <1 <n}; with )‘i+1’s(w) 2 A (W) and >‘1+1,N(w) 2 A y), for all i and all w. If
b we now apply corollary 2 to the spectral density matrices is(w) and _f_N(w), for some

E *.  fixed w, we obtain:

-1

n n
-1
er (_f;l(w) +£§1(w)) 5([z: Ais(w)] -1 +[Z>\m(w)]-l ) (8)
1=1 1=1

! ; with equality iff _fs(w) = c(w) - iN(w), for some scalar c(w).




......................

Directly from the expression em(gs, ;N) in (6) and from (8), we now obtain:
-1

e (f,, £ < (2n)~lf ([E Als(w) [122 Am(w, ) dw

£e (£, £y (9

; where if gs(w) = clw) - fﬂ(w) ; Vwe[-m,7], for some scalar function c(w)
defined on [-m,m], then equality holds above.

We will now transform the optimization problem (3A) into another optimization
problem, that involves eigenfunctions only. To do that, we will substitute the objec-
tive function em(gs, gN) in (3A), by its upper bound eb(gs, ;N) in (9). We will also
substitute the constraints in (3A) by constraints that involve eigenfunctions only.

We will show that the solution of the transformed problem is a sufficient solution for
the problem (3A).

Let gbs(w) and ng(w) be the nominal, positive definite spectral density matrices

in the classes F and F e respectively. Let {A;s(w); 1 < i < n} be the set of

L,eg L,ey

ordered eigenfunctions of the matrix gbs(w) on [-m,m]. Let {AON(QD; 1 < i < n} be the

ordered eigenfunctions of _f_oN(w) on [-m,7]; where J\ (w) > 2° (wy; ¥ i, ¥ wel[-m,7],

it+l,s

and A (w) > 20 (w); vi, v we[-m,7]. Let gs(w) be a spectral density matrix that

i+l1,N

belongs to class F and let {Xis(uo; 1 < i < n} be the set of ordered eigenfunctions

L,eg’
of the matrix f (w); where A, (w) > A, (w); ¥ we[-m,7]; ¥ i. Then, the matrix
s is - i+l

js(w) - (l—es)fos(w) is nonnegative definite for all w in [-7,7], which induces the
necessary condition Ais(w) Z_(l-es) Ags(w); ¥ we[-m,m], ¥ i. A necessary and sufficient
condition that the matrix f (W) must satisfy, so that the matrix f (w) - (1-€ ) £ (w)

i s s’ ~os
is nonnegative definite ¥ we[-m,7], will involve both the eigenfunctions and the eigen-
vectors of the matrix'gs(w). A sufficient condition for the satisfaction of the latter

o
> - . -
is given by the inequality Ans(m) (1 ss) Xis(m), ¥ wel[-7,m]. Similarly, if £ (w) is

a positive definite matrix, and {AiN(w) ; 1 < i< n} is the set of its ordered eigen-
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functions, it is sufficient that AnN(w) > (1-g)) )\;N(w) ; Vwe[-m,7], for the matrix
iN(m) - (1-€.N) go N(m) to be nonnegative definite for all w in [-mw,7}. Through the

. o . o .
sufficient conditions Ans(w) > (1-¢) Als(w), ¥ we[-m,T] and RnN(w) Z'(l—sﬂ) AlN(uD ;

¥ we[-m,m), we can now define two classes F; g and F;] g, that are contained respectively
s »“N

and FL Ex’ Those two new classes are defined as follows.

in F
L,eg »*N

J [} .
Fs,es = {£s(w) 2 A (W) > (Q-e) A]_(W); ¥ we[-7,7] and

T

T n
tr I gs(w) dw = f Ais(w) d‘*’iwl (38)
-1 1=1

-~

; where {)\zs(w) 3 1 <1i<n} the set of ordered eigenfunctions of the

nominal spectral density matrix _f_os(w) in F ﬁs(w) a positive

L,eg’
definite matrix ¥ we[-m,7] and {)‘is<m) 3 1 < i< n} the set of its

ordered eigenfunctions}.

' = . _ o . _
FN,&:N - {—f—N("’) AW > €y A N(@; ¥ we[-m,7] and
m T n
tr gN(w) dw = f AiN(w) dw < W, (3C)
-T -1 i=1

; where {)\:N(w); 1 <i<n} the set of ordered eigenfunctions of the
nominal spectral density matrix £° N(w) in FL,EN’ £N(w) a positive
definite matrix ¥ wel[-m,m], and {AiN(w) ; 1 <1< n} the set of its

ordered eigenfunctions}.

The positive constants W, and W, in the classes F' and F' respectively, are the
1 2 ,es NSEN

energy constraints in the optimization problem in (3A). The classes F' and F! {
8,E4 N,EN
are as class F in [8), and they are clearly convex and locally compact with respect |

to the metric in (2). The classes F' and F! are nonempty if respectively
S,ES N,CN
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w : L j
o -1 -1 o -1 -1 2
-. f A W dw W, m (1-€)) andf M@ dw < W, o T(1-e0) 7, ¥
-1 -1 3
;} Let us state the following optimization problem on F' x F' . f
e S,es N,E:N "4
} Find the supremum of i
. ; <
5 m n -1 n -1
A -1
e (£..£)) = @2m) j ([ E Ais(w)] +[ E Am(w)] ) dw
A S £ | i=1
?? Subject to the constraints:
o
- Ans(w) > (1—es) Als(w) 3 ¥wel-m,m] (3D)
d

A @ > (- A;N(w) : ¥ wel-m,T]

T n A
a f A (@ do < ,d
~T  i=1

T n
f A iN(w) dw < W,
~-T i=1

We can now express the main theorem for this section. Its proof is in the

appendix.
%
E Theorem A
Let the classes F and F. of spectral density matrices be such that:
L,e, L,ey
o -1 -1

f_os(w):f A dw < Wyn “(1-€ ) 1
o -7 .
: : o .

£ s | A% @ dw<wnt-e)

—oN - 1N - 2 N

-

. v
L
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Then, there exists a sufficient solution {A:s(w) ; 1< 41<n} and {A:N(w) ; 1<1<n}

of the optimization problem (3D). This solution also provides a sufficient solution

} ’ ({:(w),g;(w)) for the optimization problem (3A); where the eigenvectors of the matrices !
. _g:(w) and g;(w) are arbitrary, and it is such that:
d 1. If
n m
A - -1
- JsN =J max(wlln(l—es)kis(w), w2 n(l-eN)Acl’N(w)) dw <1 1D
=T
Then,
T e, e .
. lis(w) = ls(w) s ¥ i
- e Y - . .
< AiN(w) Au(w) s ¥ i (A.1)
: 3 where
-1
| AS@) = W, W A;(w) ; ¥ we[-m,m)
| T
J AS(wydw = nt W
. s 1
-1
2. If
n
- i1
. Jen : [ max(W-Iln(l-es)Ais(“’)’ w;ln(l'en)}‘;n(w)) do > 1 (12)
-1 .
= Then,
- e _ ~€ .
- Ais(w) = As(w) s Vi
r‘:
. e e
pr_g Aig(®) = AN(w) s ¥ i
;s where
o A% (w)
F:] — u(l—sN) A;’N(w) ; wek 4 {w:y >(1-€ ) (1-¢ )_1 —l-s———}
- u - s N o
. e AL (w)
TRy A (w) = 1IN
.-' -o. s o
P o c A -1 Als(w)
L (1-e) AW 5 weE = {win <(-e) Qe ™ 52—} (A.2)
*j . Aln(w)




£l

b dat i e i Yd RE T R R A T e

o A -1 AgN(w)
v(l-es) Xls(uo 3 wefv = {w:v > (1-€N)(1-€s) ;;—z;; }
e 1s
An(w) = .
A (w)
o . c A _ -1 "IN
(1-e) A 5 weE) = {wv < (e )(-e) ™ ———}
Als(w)
o r o -1
u :J u(l—eN) AlN(w) dw + J (l-es) Als(w) ds = n Wy
E ES
v u
v :j' v(l-es) Ais(w) dw + (1-eN) AiN(w) dw = n"1 "2
E ‘g€

v v

and the constants Y and V are both positive and unique.

The robust linear filter is then given by: gé(w) = A:(w) [A:(w) + X:(w)]_l Ljwel-m,7w],

where I the identity matrix.

We observe from theorem A, that if condition (11) holds, then any information

process with identical spectral ordered eigenfunctions X:(m), and any noise process
-1
1
provide a sufficient solution. If, on the other hand, condition (12) holds instead,

with identical spectral ordered eigenfunctions A;(w) =W W2 A:(w) 3y ¥wel-mw,m)

then the sufficient solution is strictly determined by the maximum eigenfunctions
A;s(w) and A;N(w) of the nominal information and noise processes. Since the conditions
(11) and (12) are both determined by the interrelationship between the eigenfunctions
Ais(w) and A:N(w), it is clear that in all cases the sufficient solution depends on

the latter. Solution (A.2) is graphically exhibited in figure 1. We point that the
solutions in theorem A are not unique. They are sufficient, however. That is, any

other solution can not be superior, performancewise.

A
oA
3
R

ot o . . . T T T D N D T g i




s 4. The Game Solution on FL,e x FQ

In the present section, we consider the case where Cs = FL ¢ + with energy
»ts
constraint W, and CN = FQ' The case Cs = FQ and CN = FL,EN is symmetric to the
former; thus it will not be covered explicitly. As in section 3, and due to the fact
that both the present classes Cs and CN are convex and locally compact with respect
to the metric in (2), the game reduces again to obtaining the supremum of the expression

em(gs, IN) in (6) on FL,ES x FQ' Let us denote W, as in (3A), and let {Ais(w)},

{XiN(m)}, be the ordered eigenfunctions for the information and noise processes, as
in section 3. Let, as in section 3, {A;S(w)} be the set of ordered eigenfunctions of

the nominal spectral density matrix gns(w) in FL e The original optimization problem
T8

here consists of finding the supremum:

sup e (£, £) (13)

€ e F
ss FL,es and £N

; where the constraints induced by the class F. do not impose any restrictions

? Q
on the eigenvectors.

Parallel to the optimization problem (3D) in section 3, let us state the following

optimization problem on F' x F_ that involves ordered eigenfunctions only; where

S,€s Q
F! _ as in section 3.
S,ig
Find the supremum of

-1 -1

n ( [iz;: Ais(w)] -1 +{gxm(w)] ) an

subject to the constraints:

ey (£, £ 4 (zw)‘lj

A W > (- ) A% (w) ; ¥ wel-m,m) (44)
ns - s 1s

o
p T n
. f Z AW dw < Wy

T i=1

PG WP S NP P P S |

—— T . - .
LRSI W PN WL LW




;) i=1
k k
X A A .
'.,‘ -whereA=[-TTTT]-UA, cC. =¢C -~ c
SIS ’ 0 ’ 3 0 Z k
r:_‘ .‘.,' j =l j =1
o
- As with theorem A in section 3, we can now express the following main theorem
L for this section. Its solution is in the appendix.
Theorem B
Let the class FL e of spectral density matrices be such that:
»Ts
L
o -1 -1
_gos(w) : ] }\ls(w) dw gwl n (1-ss) (14)

-

Then, there exists a sufficient solution {lis(w) ; 1 <i<n} and {k;N(m) ; 1<1<n}
of the optimization problem (4A). This solution also provides a sufficient solution
e
Q:(w)’ _gN(w)) for the optimization problem in (13); where the eigenvectors of the

matrices _g:(w) and j_;(w) are arbitrary, and it is such that:

e e .

Ais(w) = As(w) s ¥ 1

e _,e Dt s

Afg(@) = AW 5 ¥ i
k X

: where () = ;g— (1-€ ) A‘l’s(w)qu(w)
J=0 i
ko,
e _ __j_ _ o .

A = Z e (1-e ) A5_(@ 1, @

j=0 73 3 (B.1)

xg’ =f (1-€ ) A‘;S(w) dw ; 3 =0,...,k
A4
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e’ 3 if uc', > x

- I key s i="3

- xj = o o

1-€ s i <
( ( s) Als(w) dw ; if uc'j xj
A
g 3
. t 9 = -1 ! = -1
. v Z:UCg+ ExJo n wl,cjn cj
AN sHe' >x, :lct <x
d:Hey?xy 3 rhel <X

and the constant U is positive and unique.

D The robust linear filter is then given by:_lie(w) = )\:(w) [ )\:(w) + A;(m) ]_1 1; wel-w,7w],
- where I the identity matrix.
- -
b In theorem B above, 1A (w) denotes the indicator function of the set Aj. From
R h|

A (w)

. (B.1) we observe that the sufficient solution is such that the ratio z is piece-
'- Ag(w)

wise constant. This is exhibited graphically in figure 1. As in theorem A, the
% solution in thorem B is controlled by the maximum eigenfunction )‘;s(w) of the nominal

information process. The solution is also controlled here by the quantiles and the

quantiled energy of the noise process.

. 5. The Game Solution on F. x F

Q Q
= In this section, we will consider the case where the convex and locally compact
classes of information and noise processes are both FQ’ with different quantile and
energy characteristics. Specifically,denoting Cs = FQ and CN = FQ » we define,
s N
FQ = {f (W) : tr f W dw=c,;1=1,...,k
s A (15)
si K
- ; where {Asi} measurable disjoint subsets of [-mw,w], U As:l. = [-m,7],
- _gs(w) positive definite Hermitian matrix} i=1
L

............
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Q Ni (16)

m

F = {EN(u)) : tl'/ !N(w) dw=¢_,3;i=1,...,m 4

i

; where {ANi} measurable disjoint subsets of [-m,T], U ANi = [-m,n],

£N(w) positive definite Hermitian matrix} i=1

The game here reduces again to obtaining the supremum of expression em(_gs, EN) in

P RN

(6) on FQ x FQ . As in sections 3 and 4, we state the following optimization problem,
s N

that involves ordered eigenfunctions only.

Find the supremum of ‘
-1 3

m n n
A -1 -1 -1
ey (£, £) = (2m f ([ E Ais(w)] +[E Am(w)] ) dw
-7 i=1 i=1l
subject to the constraints:
n
f E lis(m) dw = csj 1 i=1,...,k
Asj i=1
. (54)
o n
! [ E )\iN(w) dw = Cyj ? j=1,...,m
- Ayy 17t
:::: ; where the sets {A .}, {A .} are given by the classes F_ and F_ respectively.
- NJ Sj QN Qs
- We now proceed with the main theorem in this section. 1Its proof is in the
appendix.
s Theorem C
Let u(+) denote the Lebesque measure in [-W,n]. Then, a sufficient solution
{)«:s(w)}, {XiN(w)} of the optimization problem. (5A) is given by the following

: expressions.
-

T

...........
[Py
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e e .
Ais(w) As(w) s Vi

. . . ’ _

' xiN(w) = AN(w) s v 1 (c.1)

(w)

; where A

/ A;(w) dw = nt cyj 3 j=1,...,m, and arbitrary otherwise

| 3

e
A (W)

"
=
1
[
u Mw

m
[Z/ AS (W) dw] NOBRE®

sj
=1 s_]n NE

A
Y PN SO

]

A special solution evolves from (C.1l), if:

e -1 -1
NOEERD LN E NI

:‘:'« i=1 t.

. ‘l. R

and then, (c.2)

As(w)

AL L) D e Mg AL WAy
=1

" k n c .c . -1 (w)
. o i n‘l Z Z sj Ni Asin ANi
. m

N ; where lA(u)) denotes the indicator function of the set A. :E‘
: A sufficient solution for the original optimization problem is given by the ]
e ordered eigenfunctions as in (C.1) or (C.2), and arbitrary eigenvectors. The robust 4
: linear filter is then given by: E
k
e e e e -1 |
H(w) = )\s(w) [)\s(w) + XN(w)] I; we[-ﬂ,n], where I the identity matrix.
From theorem C we observe that one of the eigenfunction sets (information or
C: noise process) may be selected arbitrarily, but satisfying the corresponding quantiled

energy constraints. Then, the remaining eigenfunction set is determined uniquely. A

particular such selection is given by (C.2). Then, A;(w) is.a piecewise constant

L
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function on the {ANi} quantiles, and A:(w) is a piecewise constant function on the

{Asif\ANj} quantiles. Solution (C.2) is exhibited graphically in figure 1. 1In the

Senbedfili L.

special case that k = m and Asj =A__; ¥ j, the solution (C.1) gives A:(w) =

Nj

k

2: c c-l 1 (w) - Ae(w), while the solution (C.2) corresponds to Xe(w) and Ae(w) !
£ s3I M A N s N ]

that are both piecewise constant functions on the {As } = {ANj} quantiles, at

3

it

different levels.

6. Performance Evaluation - Examples

In this section, we will discuss the performance induced by the robust linear
filters in sections 3, 4, and 5. We will also present quantitative results for some
examples.

The solutions in theorems A, B, and C provide the "worst" pair (g:(m), g;(w)) of
information and noise spectral density matrices (in terms of performance) within the
corresponding Cs and CN classes, and they are all such that Ais(w) = A:(uD; vi,
A:N(w) = A;(m); ¥ i. Therefore, if I is the identity matrix, the spectral density

matrices gz(w) and E;(w) are given by the following expressions.

e - e - . -
£ =2 (W I; wel-m,m]
(17)
£2(W) = AS(w) I ; wel-m,m]
—N N ’ ’
If e(gs, EN’ H) denotes the error induced by the spectral density matrices £s’ EN’

and the linear filter H, and if g? denotes the robust linear filter on Cs x CN’ then

in all three cases represented by theorems A, B, and C, we have:

-1
HS@) = AS() AW + A1~ - 1 5 wel-m,7] (18)
e(f,, £, BS) < e(£5, £0, %) 5 ¥(£_, £ e C_ x ¢y (19)
m -1
e(eS, £y, B = 2™t n f @) A W +A@]  w (20
-1




-','

S tr

(4

; where I is the identity matrix, expression (20) is obtained by subétituting
expressions (17) in (6), and in (20) the dimensionality of the multivariable processes
has been assumed equal to n. If we substitute expression (18) in expression (1), we
obtain the mismatch error e.(_f_s, _f_N, g_e) induced by the robust lienar filter _lie and
some pair (gs, £N) of spectral density matrices in Cs X CN' The mismatch error is
then given by the following expression.

m
elt,, £y, B = (2m 7! f De@ AW 172G 12T A @036 52 FA ) aw
—-Tr . i i

s (£, £) € C_x Cp (21)

; where {)\is(w)} and {)\iN(w)} the ordered eigenfunctions of £s(w) and £N(m)
respectively.
Let -gos and —f-oN be two nominal spectral density matrices in classes Cs and CN
e
respectively. Let H be the robust linear filter. Then, for all the classes in

sections 3, 4, and 5, the mismatch error e(jos, £ ge) is given by expression (21),

—oN?

if the spectral density matrices £s and fN are substituted respectively by £ and
=] ~os

-f'oN '

Due to expression (6), the optimal error e(_f_os, £°N) at (ios’ ioN) is given by
the following expression.
™
-1 -1 -1, 0,7t
e(_f_os, £ =@m e j £, (W +£°N(w)] dw (22)

=T

Given the classes Cs and CN’ given nominal spectral density matrices £os and
f ; in C and C_ respectively, given the robust linear filter E® in C x € , we
~oN s N - s N

will define two performance measures for the filter ﬂe. The efficiency

e e
H of .
EH, £, £, Cs, Cy the filter H at some pair (f , f) in CS x CN is defined as
. e
the ratio of the optimal error e(f , £) in (22), over the mismatch error e(f , f_, )

in (21). That is,
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e

-1
£) - € (£, £, B) (23)

e . iy
=e (£ Iy

.e(

For given filter Eé, the efficiency of ﬂé in Cs x C clearly attains its highest

N’
value, one, at (g:, gﬁ). If nominal spectral density matrices gos and £oN are given,

an interesting measure is the efficiency of the filter H® at (f , £ ).
- —o0s’ —oN

Given the robust filter gé, let us define,

{[{>d

e(C_, C_, H® inf e(f , £, H®) (24)
s N (£ ,£)eC xC =
—s —N s N

; where for any of the classes Cs, C. in sections 3, 4, and 5, the error

N

e(f,, £y, B is given by (21).

Then, we define a second performance measure for the robust filterlﬂé, in

sections 3, 4, and 5. The performance variation P(gé, Cs’ CN) of the filter gé in

Cs~x Cy is defined as the ratio .. the error e(C,, C Ef) in (24) over the error

N’
e _e _e
e(f", _f_N, H") in (20). That is,

p@®, C_, ) 4 e(C,, Cys B - e-l(_f_:, £5, 19 ‘ (25)

The performance variation clearly does not exceed one (due to (19)),and it measures
the maximum error variation induced by the robust linear filterlﬂé in Cs x CN.

The infimum repfesented by the error e(CS, CN, gf) in (24) exists for compact
classes Cs and CN, and it can be computed explicitly for the cases studied in

sections 3, 4, and 5. We state this result in a theorem, whose proof is in the

appendix.

Theorem 1

The error e(Cs, CN’ gf) in (24) 1is given respectively by the following expressions.

x F in Section 3

a. Cs x CN = F L,ey

L,e,

" If condition (11) in theorem A is satisfied, then,
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it adils A

e _ e, _ -1 -1
eC,, Cpp H) =e(f, £, B) = (2m) "W W, (W + W) :
ﬂ 3 VU, £ € FL,ES x FL,EN (26) {

If condition (12) in theorem A is satisfied, then,

B 2 2
e(C_, C,, %) = ¢ Y 5 W+ ey H 5 Wy +
5 (1) (1-+1)
. m e - n
_ r A (w
- + em™t (1) N 2 29 (@) dw
Jor _.As(w)ﬂN(w)J e
: 2
e 1 “k ( A€ (w) ] o
- + @7 (1-e) 'E_Le— Z :)\ O (27)
Jnl )\S(u))+>\N(OJ) _J o
: ; where ws, WN the energy constraints in classes FL,ES and FL,EN respectively, and
l U, v, )\;((n), X:((.o) as in solution (A.2) in theorem A.
y
b. Cs x CN = FL,es x FQ in Section 4 J
. '*
e _ E:: § : g
e(cs’ ch ﬂ) (2") (1‘€ ) (C +x ) / A (UJ) dw 1
i=1 .
3
- ' k 2 f
L x '
+ (ZTT)_l E (—j—, ) c! A
c'. +x i g
j=0 3 J ¥
g
-1 -1 7
+e_ |1 + n.m;.x (xj ey ) W (28)
o ; where W_ the energy constraint in class F ,{cg} the energy levels in class FQ,times a’l,
— L - ] L

and {x;} . {xj}, U, as in theorem B.
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y
)
j
)
4
)
4
5
g

-’ -

?: K C. Cs x CN = Fer FQ in Section 5

in ‘. -2
. e(C, C, 8% = (2m! [1 + =1 c .
A s N —" m sj

-1 ]
LZ; cng W(agp A U " (Agy)

[ ] -2
m m 3
-1 -1 -1
+ (2m) Cus ® min 1+e¢; cyp H(ALNA Du (A, )]
?-; a0 Ay *w[ > ; ne M Ry e
= J i =1

-
g =
E;

(29)

; where all the quantities in expression (29) are as in theorem C.

In theorem 1 above, it has been assumed that in cases a. and b., the energy

levels Ws and WN are fixed.

From expressions (A.32), (A.38), and (A.42) in the appendix,the solutions (A.2),
(B.1), and (C.2) in theorems A, B, and C respectively, and by direct substitution in

expression (20), we also find,

1. Case in theorem A. Condition (12) satisfied

e _e e
e(_f_s, QN,E)

(21r)-1 n {(1-5:N)u[1+u]-1 [ Acl’N(w) dw +

- I

o E

L. 3}

: 2 (16 ) L€ A] AT @ )
:. + (1—es)v[1+\)] Als(w)dw +[ S S dw{
" E, k€ 8 (1-€ )X _(W+-e A (w)

4 (30)
.o

o

< B ; where all the quantities in (30) are as in theorem A.
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d
: 2. Case in theorem B,
S k
e e e/ _ -1 ' ‘ -1
i B e(€S, £, B = 20t a D et x, [e) + x;] (31)
g 3=0
: ; where all the quantities in (31) are as in theorem B.
I =
E - 3. Case in theorem C. Solution (C.2)
-
t‘ ) m k m -1
g e e e -1 -1 -1 -1
i _ elEefpd)=0m Z cygH  (Ayy) Z [1+csj E: cygH Ay Agydu (AM)] ulag N A y)
~o i=1 j=1 2=1
(32)

; where all the quantities in (32) are as in theorem C.
Finally, for the robust filterlgg in sections 3 and 4, we can evaluate respectively

e
a breakdown curve and a breakdown point. The breakdown curve for the robust filter H

* % x
in section 3 is the set of points (es, EN) such that, if either one of the €gs Ey
e
values increases, then the error induced by H at any pair (gs, EN) in FL,ES x FL,EN
can take arbitrarily large values. The pairs (es, €N) for which that occurs are

those that satisfy condition (11). Indeed, expression (26) is then satisfied, and

the error e(Cs, CN9.§F) increases then monotonically with the signal-to-noise ratio

Wl W;l. The breakdown point for the robust filter Ef in section 4 is this value €:

above which the error induced by EF at any pair (gs, gﬂ) in FL,es x FQ can be
arbitrarily large. The values es for which that occurs are such that x, = pc'! ; ¥j

b 3
in the solution of theorem B. 1Indeed, by substitution in (21), we easily find that

N’ gf) is as in (26). The condition xj = | c3 3 ¥ j provides,

in general, a lower and an upper bound on €ge The upper bound e: is the breakdown

then the error e(Cs, c

point. The lower bound €qL’ in conjuction with the lower bound C;L provided by
condition (14), determine acceptable es regions, for which the solution in theorem B

holds. Directly from (14) and (3A), we obtain:

A aa : N At At atataa® o Al i At ki) ol bk Sl ) it o b el s s




...........
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$ T _ 1 L
o
eéL = ll + 27 ws [f n )\ls(w)dm - 27 wos] % (33)
-7
. From the condition xJ = U c3 ; ¥ j, and from the quantities in (B.l), we obtain
: after some simple computations,
n
- k k -1
: o = ‘ - ! ° - - : ]
o €L :15181 ([zwwos (Z cj)j n Als(w)duﬂ [ZTT(WOS W) (Z cj)/ n Als (w) dw] )
i 1 j=0 Al j=0 A.m
- (34)
E
i = ; where
5 ‘ k -1 )
- S 4 i: n A2 (w) dw < 27T(W -W ) Zc’ (35) ;
3 1 : 1s os s 3
A j=0 J
1
k K -1
* = (o] _ ] (o] - r
€g ::g{ [(Z cg)f nkls(w)dw anos][(z cj)f n)\ls(w)dw-ZTr(wos ws)] 1
2\"'j=0 Ay j=0 A ,4
(36) ’
. k -1
s.8li| ax® @ aw>arw Zc' (37)
2 1s os hj
Ai j=0

FTTY

The acceptable es region for the case in theorem B is then [max(ssL,e;L),e:].

Tj If class S1 in (35) is empty, then € = 0. If class 32 in (37) is empty, then
e =1,
s .
The breakdown curve induced by the robust linear filter gf in section 3 is of

particular interest, and it will be studied here analytically. As we will see, this

H

curve behaves as the capacity region in information theoretic, two-user multiplexing.
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Let, as in theorem A, n be the dimensionality of the vector information and noise

processes, 1etllgs(w) and X;N(m) be the maximum nominal eigenfunctions for the

[ 4
&
PPN TP RIS - O S

information and noise processes respectively, let wos and woN be the energies of

the nominal information and noise processes, and let ws and WN signify the energies

L

of the contaminating information and noise processes respectively. Let us define,

-1
8@ 23 @ DI ;5w el-m,m]

1§ SORRINT ORI ) WAy

4 m
- pd [Lr n A‘l’N(m) dm][[" n x‘;s(w) dw] 1 4
- A

m
(21:)2[ / n }\;s(w) dw] * max (mui)n gw), (zn)‘z D)
-

- “
> A 2 - -2 -
| a % @n [ f a Agy () du)]~max (min g @), 2m7 p7h) (38)
T J-T
3.3 somw [A, - 2T W ]_1 -
' N N AN oN } 1
. _J
-1 2
e B 214 2t W [A -21wW ] lz N
ot s 8 s os 2
&
L] We can now state the following theorem, whose proof is in the appendix.
Theorem 2
Let the function g(w) = A:s(w) [A;N(w)]_l be continuous everywhere in [-m,T7]. #
:i Wherever differentiable, let the derivative of g(w) be zero or infinity only on an w f
set of measure zero. Then, the breakdown curve for the classes in theorem A is :
X .
o, strictly concave, the acceptable (es, EN) region lies within the subplane ([Bg, 1]x[B_, 1]; -
de oe '
S N
where the numbers Bs’ BN are given by (38), and the derivatives BEN es -1, 388 £y = 1

are both zero.

Indh
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The breakdown curve, and the acceptable region are exhibited in figure 2. If
the function g(w) in theorem 2 has zero and/or infinity derivatives on nonzero measure
w sets, then the breakdown curve will still be monotone, but it will not be strictly

concave. We observe that the quantities AN Al wo and AS - 27 Wos in (38) are

N
both nonnegative, and they are strictly contrclled by the nominal information and
noise processes. If both those quantities are strictly positive, the lower limits
BN and B8 in the acceptable region decrease monotonically as the contaminating

energies W _ and Ws respectively increase. The limits BN and Bs become zero for any

N
- = - = - T
WN, Ws values, if respectively AN 27 WON 0 and As - 27 wos 0 2is, ior example,
occurs if (2‘!1’).2 max g(w) > D > (2‘rr)2 min g(w), and I A8 (w)dw = A° (w) dw,
w g n w o 18 -n =1 18

T
S nxiN(w)dm = s A?N(w)dm; where g(w) and D are given by expressions
-

(38). The above conditions reflect the case where the nominal ordered eigenfunctions

-1 i=1

(for both the information and noise processes) are equal to each other. We finally
note that the lower boundaries Bs and BN in the acceptable region of figure 2 are
results of the conditions (10) in theorem A. Those conditions were imposed so that
the robust solution is independent of spectral eiéenvectors.

We will complete this section by presenting and quantitatively analyzing some
examples. We will present examples for the two, more interesting, cases in sections
3, and 4. We will base our quantitative analysis on the performance measures introduced
in this section,

a. - Example for Case in Section 3

Let the nominal information and noise vector processes have dimensionality two.

We select,




= Cra eI Bt I A AR A e e e e T e s e e e e - T
—
o
Als(w) 0
£ (@ = .
os 0 AD (w)
2s°
) (39)
o
An@ 0
f (W) =
=oN o
0 AZN(QB_
s where
o 2 2 -1
Als(w) = os[l + 2 a, cos w + a1]

-1

- o 2 2
¥ AZS(w) Usll + 2 @, cos W + aZ]

& (40)

SR A° (W) = o%[1 + 2 B w + 82]-l
1N N 1 ©°s 1

-1
Agy@ = GA(L+ 2 8 cos u + 2]

-1 and W W-l values will
os N oN

-1 -1
We also select Ws wos =1 and W_ W

N Yon = 1. Increased ws W

give uniformly inferior performance for any pair (es, EN). Decreased such values will

give wmiformly superior performance, instead. In expressions (40), we select,

02 =5 x 10'_2
s (41)
2 -2
UN 10
We also select,
al = a2 = ,98
(42)

B, = By = --93

The above example corresponds to the case of equal eigenfunctions for both the

. W_,.‘.
PR +- SO
N - 1 4 -
.- . e
I .




nolse and information nominal spectral density matrices. Thus, the acceptable region
of figure 2 is here such that Bs = BN = 0. Computed points of the breakdown curve

Il are given by table 1 below.

€ 05 1] .1 .16 | .25 | .34 | .46 | .58 | .70 | .79 | .85 .91 | .97

] € 95| .88 | .79 { .70 } .61 | .49 | .37 | .25 | .16 | .10 | .07 | .01

Table 1

Breakdown Curve for Example (39)-(42)

For the example stated by expressions (39)-(42), we computed for various (Es’ EN)
) e
8 values, the efficiency E(H , gbs’ ng, Cs, CN) at the nominal pair (gos, goN), the

peformance variation P(gé, Cs, CN)’ and the error e(g:, £2

£ ﬂé). We also computed the

~. We denote this error variation P(g?, Cs, CN), and we define it as the ratio of

min e(f , £, Ho) over max e(f , £, Ho). We exhibit our results
(£.£.)eCxC, = N7 (£.£)€C xC, = ¥
=g’—~N s° N =s’>~N"""s" N
in tables 2, 3, 4, and 5 respectively. In table 6, we exhibit values for the quantity
B max e(f, £, H”) 8 ew®.
‘ (—f-s’£N>€csch

error variation induced by the optimal filter g? at (gos, EON)’ within the class Cs X CN.

.01 (.05 |[.1 15 .2 .3 o4 .5 .6 .7 .8 .85 [.9

A .95
i@ .985 |.981 [.972 |.959 |.941 |.893 |.832 |.761 |.677 |.578 |.457 |.381 [.202 |.187
Y1 .74 [.173 |.169 [.163 [.158 [.152 [.141 [.131 [.120 |.120 [.101 |.091 |.087 |.083 [.083

13 |.109 |-109 |-107 |-106 |-104 |-102 |.098 .09 |.091 |.087 |.083 |.083 |.083 |.083 |.083

s |.097 [.096 |.096 [.095 |.093 |.092 [.089 |.086 |.083 [.083 [.083 |.083 [.083 |.083 [.083

1.7 |-091 [.091 [.001 [.090 [.088 [.087 |.083 [.083 |.083 |.083 [.083 [.083 |.083 |.083 |.083

| Fls .09 |.09 |.089 |.087 |.085 |.083 |.083 |.083 [.083 |.083 |.083 [.083 [.083 |.083 [.083

L9 l.oss |.088 |.087 [.083 |.083 [.083 [.083 [.083 |.083 |.083 |.083 |.083 |.083 |.083 |.083

| Table 2

‘ : E(gf, £fo50 fon Cs, CN) for Example (39)-(42)
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.002 1.01 |.05 | .1 A5 | .2 .3 .4 .5 .6 .7 .8 .85 | .9 .95

.733 |.680 |.503| .378) .302( .252} .190{ .156{ .135} .124{ .123]| .139| .164]| .219{ .375

.682 |.681 {.675{ .671} .670| .672| .684}( .706] .738} .782| .840| .914} .958}1.00 {1.00

.852 }.852 {.851| .852f .856( .860; .876{ .897| .926] .962{1.00 |1.00 (1.00 }1.00 [1.00

.903 {.903 |.903| .906| .912| .919| .940| .968(|1.00 |1.00 [1.00 {1.00 [1.00 {1.00 [1.00

.927 }.928 |.930| .937| .948| .963(1.00 |1.00 |1.00 |1.00 |1.00 |1.00 |1.00 {1.00 |[1.00

.935 }.936 {.941| .955| .977{1.00 {1.00 |1.00 {1.00 }{1.00 {1.00 }1.00 {1.00 |1.00 {1.00

.942 |.943 }.960{1.00 J1.00 {1.00 [1.00 ]1.00 {1.00 {1.00 {1.00 |{1.00 |1.00 {1.00 |1.00

Table 3

P(H, CS, CN) for Example (39)-(42)

.002 |.01 (.05 |.1 15 1.2 .3 A4 .5 .6 .7 .8 .85 .9 .95

.101 1.109 {.145 |.189 |.233 |.277 (.365 |.449 |.532 {.613 |.692 |.768 {.803 |.837 |.866

.617 [.621 |.641 [.666 |.689 |.712 |.753 |.789 |.821 }|.846 |.865 |.877 |.879 |.880 |.880

.789 }.791 |.801 |[.813 |.824 |.834 ;.850 |.864 [.873 |.879 {.880 |.880 }.880 {.880 }.880

.839 {.840 |.846 |.854 |.860 {.866 |.874 {.879 |.880 {.880 |.880 }.880 |.880 }.880 |.880

.862 |.863 |.868 |.873 (.876 {.879 |.880 |.880 |[.880 [.880 |.880 {.880 |.880 |.880 |.880

.870 |.871 |.875 |.878 {.880 |.880 |.880 [.880 |.880 |.880 |.880 |.880 |.880 |.880 |.880

.876 {.877 |.879 |.880 |[.880 |.880 |.880 |.880 !.880 |.880 |.880 |{.880 {.880 {.880 |.880

Table 4

e(f], £, H°) for Example (39)-(42)

...........
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.002 .01 1{.05 .1 A5 .2 .3 A .5 .6 .7 .8 .8 1.9 .95

.797 |.764 [.633 [.525 |.451 [.398 |.325 |.278 |.245 (.221 {.202 |{.188 [.181 [.176 |.170

.077 }.077 |.077 }.077 |.076 |.076 |.075 |.074 |.074 |.073 |.072 |.072 [.072 {.071 |.071

.028 |.028 |.028 [.028 |.029 (.029 |.030 {.030 {.031 |.031 [.032 |.032 [.032 |.033 |.033

.017 {.017 |.017 {.018 {.018 |.018 }.019 |.019 {.020 {.020 {.020 {.021 [.021 {.021 |{.022

.013 |.013 [.013 [,013 |.013 [.013 |.014 [.014 |.015 [.015 |.015 {.016 |.016 {.016 |.016

.011 |.011 |.011 }.011 |.012 }.012 {.012 |.013 |.013 |.013 |.014 |.014 [.014 |.0l4 |.014

.010 }.010 |.010 j.010 {.010 {.011 ;.011 |.011] [.012 |.012 (.012 |.013 {.013 |.013 |.013

Table 5

P@’, C_, C,) for Example (39)-(42)

A = e . . S PSR PR D) R Y S S WP S I P SR
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We note that large P(g?, Cs, CN) and P(E?, Cs’ CN) values correspond to small

error deviations within Cs x CN’ as induced by the filters g? and ﬂ? respectively.

PO N T SRERENUORSSN

From tables 3 and 4, we observe that, for large values of the pair (es, (»:N), the error

. deviation within Cs x CN is small, but it deviates around absolutely large values of

Aadas,

the maximum error e(g:, £© gf). From table 2 and 4, we observe that the efficiency

N »
e e _e
joN), and the maximum error e(f, ;N,lg ) both degradate

P TV VY

B at the nominal pair (éos’

gracefully as the values of the pair (es, EN) increase. The values .083, 1,00, and

.880 in tables 2, 3, and 4 respectively correspond to values (es, EN) that are beyond
— the acceptable region; that is, beyond the breakdown curve. Comparing tables 3 and
4, with tables 5 and 6, we observe the truly dramatic effect of the robust filter gf.
Indeed, from tables 5 and 6 we see clearly that if the presence of the contamination
is ignored, and the optimal at the nominals filter is adopted, then the error fluctua-
tion as well as the maximum error in Cs X CN are dramatically large, as compared to
those induced by the robust filter. This is so, even for small contamination para-

Il meters es and €. Thus, the results of the comparison between tables 3 and 4, and

N

5 and 6 speak for themselves, and those results are the true advocates in favor of

the robust approach.

-~ In figure 3, we have plotted the efficiency E(ge,.g s’ ng,
. (o}

. error e(g:, g;, g?), and the performance variation P(gé, Cs, CN)’ for the example (39)-

C, C), the maximum
[ N

(42), as functions of EN, for Es = ,1 and es = ,7. We notice that for both es = .1

?ﬁ and es = .7, the performance variation induced by the robust filter maintains uniformly
- e e
high values, but so does the maximum induced error e(gs, j;,.ﬂ ). Thus the error

-~ induced bylﬂe fluctuates relatively a little within Cs x C., but it does so around

N’

e _e
relatively large error values. At €g = .1, the maximum error e(gs,,gN,
-~ than 25 percent less of the same error at Es = .7, for EN values not exceeding .0l.

gf) is more

The maximum gain in performance variation P(ﬂ?, Cs' CN)' as one moves from es = .1

to Es = ,7 is about 33 percent, realized at about EN = .18. The gain in efficiency

[ e A . . - - . L. L . e,
*A"-"-.‘-‘L'-'A"L'm';'1'1'1'1’1'9~‘L__L_“.-‘~-~1'._11~‘11-~-ux:-‘-Ax-.4--..L._A.L‘ o
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R CN)’ as one moves from e, = .7 to €, = .1, reduces monotonically

e
E@, -f'os’ 'g‘oN’ Cs

as EN increases. The maximum such gain exceeds 8 percent. We note that the EN regions
in figure 3, within which the curves (2), (3), and (4) converge to the respective values
.083, 1.00, and .880, signify points beyond the breakdown curve. In figure 3, we have
also plotted the performance variation P(E?, CS, CN)’ for €, = .1. We observe how

dramatically smaller than P(gé, Cs, CN) this variation is. This fact, in conjuction

with the off-scale values of the maximum error e(§°) exhibits nicely the superiority of

" the robust filter Eé, as compared to the optimal at (gos, joN) filterlﬂé. At e_ = .7,

this superiority is far more striking, and it is deleted from figure 3.
We point out that if, in our example, we select the nominal eigenfunctions in
(40) such that A% (w) # A0 (w) and A% (w) # A% (w), the performance induced but the
1s 2s 1IN 2N
robust filter gf will deteriorate uniformly. This deterioration will be increasing,

as the distance between the corresponding eigenfunctions increases.

b. Example for Case in Section 4

Let the vector information and noise processes have dimensionality two. We

select, as with the example for section 3,

2% (w) 0
£ W) = 1s
~0s o
0 Azs(w)
2 @ = 2° (W = 0%l +2acosw+ az]-l
1s 2s s co
- (43)
02 =5 x 10 2
S
a= .98
W =W
-] oS

And

sadda




Then, C;L in (33) is equal to zero, and the class Sl in (35) is empty. Thus,

max (E;L, € .) =0.

sL

-y
Let us select a nominal spectral density joN(w) in the class F,. We need this, ’

Q

to evaluate performance measures P(g?, Cs, CN) and e(ﬂo), as with the example for the ]

case in section 3. Let.goN(w) be such that,

(o]
AlN(w) 0
_§°N(w) = .
0 XZN(w)
2% () = A% (w) = o2[1 +2 B e
N = A _oN[ + cos w + B7) (44)
2 _ 442
oy = 10
B = -.93

We select the quantiles {A,; 0 < j < k} in FQ such that, A.j = [jw(k+1)-1,
(j+1)ﬂ(k+1)‘1), The energy level cj in Aj is then equal to ./- ZA:N(w) dw,
A

h|
where A;N(w) is given by (44). We select k+l values equal to 2, 4, 10, 20, and 30.

As in the example for the case in section 3, we compute for various es values the

. e e e e e o
quantitijes E(H , ibs’ EDN’ Cs, CN), P(H, Cs, CN), e(gs, £ i), p@, Cs, CN), and

e(ﬂ?). Our results are exhibited respectively in tables 7, 8, 9, 10, and 11; where

for all cases the class 32 in (37) is empty, thus e: = 1.
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k+1 N .002 |.01 | .02 | .1 .2 .3 4 .5 .6 .7 .8 .9
Ij;z .643 |.568 | .453 | .173 | .124 | .109 | .100 | .096 | .093 | .091 | .090 | .088
4 .895 |.733 | .s28 | .173 | .125 | .109 | .100 | .097 | .094 | .092 | .090 | .089
Ezlo .970 |.759 | .537 | .174 | .125 | .109 | .101 | .097 | .094 | .092 | .090 | .089
20 .977 |.766 | .538 | .174 | .125 | .109 | .101 | .097 | .094 | .092 | .090 | .089
!ﬁgo .981 |.778 | .550 | .178 | .126 | .110 | .102 | .097 | .094 | .092 | .090 | .089
- Table 7
;_ E(R%, £, £ s C ., C) for Example (43)-(44)
= P N .002 | .01 | .02 | .1 .2 .3 4 .5 .6 .7 .8 .9
2 .818 | .565 | .515 | .686 | .799 | .853 | .884 | .904 | .919 | .929 | .938 | .946
4 .743 | .480 | .459 | .685 | .798 | .852 | .883 | .903 | .917 | .928 | .936 | .943
il1o 719 | .468 | .454 | .683 | .798 | .852 | .883 | .903 | .o17 | .927 { .936 | .942
:lza 729 | 464 | 454 | .638 | .798 | .852 | .883 | .903 | .917 | .927 | .935 | .942
T30 724 | .467 | .452 | .676 | .793 | .848 | .879 | .900 | .914 | .925 | .933 | .940
. Table 8
. P(gé, Cs’ CN) for Example (43)-(44)
l_: €
Lkl .002 { .01 | .02 | .1 .2 .3 .4 .5 .6 .7 .8 .9
.J 2 139 | .227 | .313 | .618 { .737 | .790 | .821 | .840 | .854 | .864 | .871 | .877
':L:a .110 | .208 { .301 | .617 | .736 | .789 | .819 | .838 | .852 | .862 | .870 | .876
‘{10 .105 | .206 | .299 | .616 | .735 | .789 | .819 | .838 | .852 | .862 | .870 | .876
: ‘]20 .104 | .205 | .299 | .616 | .735 | .789 | .819 | .838 | .852 | .862 | .870 | .876
30 .103 | .201 | .294 | .609 | .730 | .784 | .815 | .835 | .849 | .860 | .868 | .874
Table 9
e(jz, g;, ﬂé) for Example (43)-(44)

e e Shenaid

PP AP
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1N 002 | .01 | .02 | .1 .2 .3 b .5 .6 .7 .8 .9
.075 | .072 | .069 | .049 | .035 { .026 | .020 | .016 | .012 | .010 | .008 | .006
.227 } .208 | .188 | .104 | .064 | .044 | .033 | .025 { .019 | .015 | .012 | .010
.670 | .543 | .438 | .167 | .090 | .059 ( .042 { .032 | .025 | .020 | .016 | .013
.812 | .639 | .504 | .181 | .096 | .063 | .045 | .034 | .027 { .021 | .017 | .Ol4
.853 | .672 | .530 | .191 | .102 | .067 | .048 | .036 | .029 | .023 | .018 | .015
Table 10 .
P(g?, Cs, CN) for Example (43)-(44)
€
k¥l X | .002 | .01 | .02 | .1 .2 .3 .4 .5 .6 .7 .8 .9
Y .684 | .706 | .735 | .960 | 1.242) 1.525| 1.807} 2.089] 2.371{ 2.653} 2,935} 3.217
.262 | .285 | .313 | .538 .8211 1.103} 1.385} 1.667| 1.949{ 2.231{ 2.513{ 2.795
.099 | .121 | .149 | .375 .657] .939| 1.221| 1.503| 1.786| 2.068] 2.350| 2.632
.085 | .108 | .136 | .362 .644( .926] 1.208] 1.490| 1.772] 2.054] 2.336] 2.619
.082 | .104 | .131 | .349 .621} .893] 1.165} 1.437) 1.710} 1.982] 2.254] 2.526
o Table 11
;5 :t; e(H®) for Example (43)-(44)
U
E; " From tables 7, 8, and 9, we observe that the number of the quantiles affects the
S ;{ performance induced by the robust filter EF, only for €g values below .02. Then, the

performance improves as the number of the quantiles increases, with highest effect on

e
the efficiency E(H , ios’ ioN’ Cs’ CN) and for es < ,01. The reason for this behavior

is that, the more accurate representation of the noise spectral density matrix goN

resulting from the increased number of quantiles, drives the robust filter gf close

to ﬂ?, only for small contamination Es. For relatively large such contamination, the
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accuracy in the representation of EoN has little effect on the design of the robust

filterlgé. Comparing tables 8 and 9, with tables 10 and 11, we see again the striking

A s 2

effect of the robust filter, as compared to the optimal at the nominals (gos, foN)

AN

filcer, g?.
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R(l-g0) A lN(tp)
o . _ _ o
:‘:.l-es) )‘.l.s(*’) q'-—'—v(l es)}\ls(m)
. -7 —_— T Ll —_——y 7 J
Solution (A.2) ~ Theorem A
e e
25 -, c 1t s (w)_xkc—l
- e 3§ 3 e k
/ AN(w) XN(w)

-7 ke WEA | » —3>
] 3 «

Solution (B.l) — Theorem B

e
| A

' 1L/

- aa s tw e e me e - e-

kLEA —d m

": -1 _“ ™
e msA.Nj e weAN,j+.L —_—

| v |
(- |
A
B Laew
; ,/ \
l
b SR A '
i |
: } =T “ANj‘\Ast ; N,j+l[\ As—;i"'l T ©
| -
; . Solution (C.l) - Theorem C
] Figure 1
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(2): Efficiency from Table 2.

(3): Performance Variation from Table 3.
(4): Maximum Error from Table 4.
(5): Performance Variation from Table 5.

Solid Lines: €s=.l
Dashed Lines: €s=.7

Figure 3

Performance Curves. Example (39)-(42)

- o a

ke e b o

Y “ R o,

NS G RRARE.




.....

. (1)
“a (2]
* (3]

(4]
(51

(6]

red

A

(7]

(8]

__ Y

a4 o S ook aut amh ah i s o

References

R. Bellman, Introduction to Matrix Analysis, 2d Edition, McGraw Hill, New York,
N.Y., 1970.

E. J. Hannan, Multiple Time Series, Wiley, New York, N.Y., 1970.

S. A. Kassam and T. L. Lim, "Robust Wiener Filters," J. Franklin Inst., Vol.
304, pp. 171-185, 1977.

A. Kolmogorov, "Interpolation and Extrapolation,” Bull., Acad. Su. USSR, Ser.
Math. 5, pp. 3-14, 1941,

D. G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, N.Y.,
1969.

P. Papantoni-Kazakos, "A Game Theoretic Approach to Robust Filtering,"
University of Connecticut, EECS Dept., Technical Report TR-81-12, Oct. 1981.
Submitted for publication.

H. V. Poor, "On Robust Wiener Filtering," IEEE Trans. on Aut. Control, Vol.
AC-25, pp. 531-536, June 1980.

H. Tsaknakis, D. Kazakos, and P. Papantoni-Kazakos, "Robust Prediction and

Interpolation for Vector Stationary Processes," University of Connecticut
EECS Dept., Technical Report TR-82-7, Nov. 1982. Submitted for publication.

N. Wiener, Extrapolation, Interpolation,_and Smoothing of Statiomary Time
Series, Cambridge MIT Press, 1949.

- - D * . - < A - ~ N .- : P o ‘- - - - -
v Ve . .« 2 . o« e e . ORI . . . . . . -
M--'AJAJQ'-*-LAx [ PRI WO Gy S s PP GO T PO PU P - et ool

v-— T A e L R R R R D ut S AL . IR
T BT @ Ta T vy ey s e s Ty T I . . - . LY LR LY e, N a . ST T T .
e AR . -




VR T w U W, W, T R, ¥ T B B W T

R

= g

i Appendix

' Proof of the Lemma
Define the set Ag 4 {x:xeA, g(x) >0}. If £f+g >0, a.e. in A, then £ > O,

a.e, in A - Ag' Define,

vv-"r'r-w—svvﬁ-".a'v', -
Al LA B A "
. '
-

A
B) = d > BCA
5 ug() [g m g
P B
A
h uf(B) =J f dm ; BC[A—Ag] (A.1)
B

">

6 ) 2 At A el-1,9)

The measures ug and ]Jf in (A.1) are positive measures, and the function ¢ is

clearly concave. We now write,

fﬁgdm=/ g~¢(§)dm+/ £:9(%)am=
A A A—Ag :

= / s (é) d uy + / ¢ (%) d ug (A.2)
A

A-A
g g

L B

NOOD? - 4

Since the function ¢ is concave, we apply Jensen's inequality in (A.2), and
we obtain:

£z Y £ )
f Frg 0 S VgAY ¢(”g (ag) / g ¥
A

A
g

+ up(aa) -0 (it (a-a) / £ -
A—Ag

et . PRI TP LEP G UENP SR YA - S-S SRV SR SRR S8




Sy ) o st
T L

g g g g <

f gdm + _/ fdm T f gdm + f fdm
A A A-A A-A
g g g

/ gdm. / fdm / gdm / fdm /gdm '/fdm
A A A-A A-A A A
k

with equality in all parts iff f = cg; a.e. in A
4

o

The proof of the lemma is now complete.

Proof of Corollary 2

Let li(A), Ai(B), )«i(A-1 + B_l), i=1,...,n be the ordered eigenvalues of A, B
-1 -1 :
and A © + B " respectively. Let {ii’ i=1,...n} , {Ei,i=1,...n}, {Ei’ i=1,...n} be

the associated orthonormal sets of eigenvectors of A, B and A-l + B_l. Then, we can

write:
n
T
-1 -1 *
A _Z)‘i (A) 2 a;
1=1
n
! = E A1) b bt
1 2=
i=1
and

n n

-1
-1 -1 1 1
tr(A ~ +B ) = E 1= E T =

-1 -~
A (ATT4B7) - -1, -1
i i=1 ¢, (A 4B dey

(A.4)

.Zn

1
T n T
-1 % 2. -1 %* 2

DL At e e et e T e e . o
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- A.3
The relationships
n «T 2 n +T 2
z(_':_i a) = (c; 3) =1; ¥k, ¥i
k=1 i=1
. n T 2 n T )
E (—°-1 31:) = (gi gk) =1; ¥k, ¥1
) : =1 i=1
and the convexity of the last expression in (A.4) with respect to A;l(A), lzl(B)
- yield: ;
‘. n LT 2 T 2 >
- 0l N iz:=l € ) (g By ' J
tr(A 7 +B ) < E 2 5 - (a.5) :
k=1 £=1 A (&) + 2, (B) y
. If we apply the lemma for
n n
S = E z Ak(A) lAkL
k=1 4£=1
. n n ..
2 k=1 =1 -3
]
‘ and positive measure m(-) such that ’ :a

2 T 2 ,T 2
m(Au) = Z (gz gk) (32 38)
i=1

n n
; where {Akl} any sets: U U Akl = A, AkI_ mutually exclusive,we obtain:
k=1 £=1 5

N 40
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.
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- ~ e 3 T oN,T T T T T wm T ® T s w - oW TiT
T —— Chi i - A K . LASCE AN - ST ~

A4
»
LL *T 2 T 2 -
n 0 ;gi (g4 gk) (gi b,) i:
) - < —d
=1 £-1 A (B) + 2,7 (B) >
n n n -1 -
*T 2 *T 2 7]
< A (A Z (e; 2 (g5 By ) +
k=1 4£=1 i=1 -

+
——
A )
fur
™M=

n,ooor 2 Lt 2t
* *
AL(B) E (cI ik) (gi EL)) =
1 i=1

(B (Be) ]

k=1 £=1

=]

-1

-1
[(trA)‘l + (trB>’1] (4.6)

From (A.4), (A.5), and (A.6) we conclude the desired result.

Proof of Theorem A

We will present the proof in two parts. In part 1, we will prove that (A.1)
and (A.2) are sufficient solutions for the optimization problem (3D), and that they

1 )
satisfy the supremum of em(gs, £N) on Fs,es x FN,EN' In part 2, we will prove that

a solution on F;

x F! is sufficient for the optimization problem on F x F
€5 © 'N,eN P P L,eg © 'L,ey

Part 1

Let us define:

n
A & a7 Z Ay (@
i=1 'i
(A.7) ]
n 4
A -1 -
AN(w) = n ka(w) 4
i=1

PP [P S S . oo e B B s s et e Ao B e s
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Tt et - - AR A . DS — e - A < - . S . . . RO - - B

...... s

o

(T

e
F s

2 1. If condition (11) holds, then,

m Ui

E . a~t W '—'f A (w) dw >f max ((1-6 ) A% (w) wl W.(1-e ) A° (w)) dw

‘ 1 s - s "1s” "’ "2 "1 N° "1IN

RO -T T

o . (A.8)
o Ul f

Ll - A (w) dw > Wl W (1e ) A% (), (1) A% (w)]d

l,l noW N 2| max{W W,(1-€) A, W), (I-gp) A (W)} dw

b N - -1 :

The relationships in (A.8) show that there exist admissible eigenfunctions

As(w) and AN(w), as in (A.7), such that:

AW > (A-e) A (@) ;5 ¥ wel-m,7]

s

-1

wz Wl AN(w) > (l—as) Ais(w) 3 ¥wel-m,7]

XN(w)

|v

(1-€N) Acl’N(w) s ¥ oel[-m,7]

-1 o
WU W, AW 2 (1-e)) AlN(w)

1 ¥ wel[-m,m]

-s

Therefore, a choice of eigenfunctions as in (A.1l) is fully consistent witu the
constraints of the optimization problem (3D). Also, the value of the objective

function eb(is , _f_N) in the problem (3D) becomes then,

e (£, £5 = 2m 7ty
—s  —N

-1
b w2 (w1 + wz) (A.9)

1

Inversely, applying the lemma and corollary 1, we obtain:

-1

™ n n n n
- ™ J [Z xis(w)][z AiN(w)] [Z AL+ ) Am(m)] aw <
—m 1=1 i=1 1=1

i=1

_‘-1

mT n T n T n T n
< (2mL [ f Zkis(w)du][J me(w)dw]ﬂ Elis(w)dw + ] Exm(w)dw J -

T =1 Ti=l Lri=1 T i=1

-1 -
= 2m ™ Wy 4w (A.10)




.....................

A.6

From (A.9) and (A.10) we clearly conclude the sufficiency of the solution (A.1l)

in theorem A, for the optimization problem (3D).

2. Let condition (12) hold. Considering the functions in (A.7), and the objective

function eb(fs, gN) in the optimization problem (3D), we have due to the lemma:
i

(2m) eplfy, £ < n f A (@) A D@ + A @17 aw (a.11)
-

On the other hand, for the admissible eigenfunctions {Ais(w)} and {X:N(m)} in

solution (A.2), we have:
™

(2m) e (£5, £) = n f AS@ A5 W + AW 17 aw (A.12)

-7
We will prove that for any admissible functions As(w), AN(w), as in (A.?), we

have:

1 i
f A @) A @) A (W) + AN(w)]‘l dw < f A:(w) };(w)m:(m) + ;\;(w)]"l dw (A.13)
-7 -

We first observe that due to the condition in (12), the sufficient solution in

(A.2) is such that:

u<w;1wl,v<w11w+uv<1 (A.1%)

2

Due to (A.l4) we also conclude that the sets Eu, Ev in (A.2) are such that:

Eu NE, =9 (A.15)

Euc Es, E, < Eﬁ (A.16)

(A.15) is true, because if not, there would exist some w in Euf\ Ev such that

-1 W o1 AW
p > (1-e )(l-e ) = ——— and v > (1-€ )(1-€ ) —————— , which contradicts (A.14).
- 8 N o N s o .
A ) As@

. -, IO « .- PO -, .- - . .- . .. . . . .
e e e e e e T T T e s e e e e T e T e e Lo e L oa L C . L. N RPN
W ST S L T AT TR AR T (P T WA YPRT TNPURT TV TR Wy PN W e N U U DU Y U (e, Y WP U, . A . U U ST S ST CUE- SRS A WLl VU SRRV, I . AUV 0. R WP UL PR, AP




(A.16) follows from (A.15). Due to (A.15) and (A.16), we conclude that the interval
[-7T,7} can be subdivided into the three disjoint and exhaustive sets E]J’ E\)’ E;(\ E\c).
l Finally, from the solution in (A.2), and the constraints in (3D), we clearly obtain

that for any admissible functions }\s(w) and )\N(w), as in (A.7), we have:

e c
n )\s(w) - As(w) >0 ; Vuwe Eu A1)
AN(w) - A;(w) >0 ; Vwe Es
We now concentrate on the proof of (A.13). Due to (A.14) -~ (A.16), we easily
" obtain:
T il
L -1 e e e e, -1 _
" f As(w) AN(w)[As(w) + ).N(w)] dw —f )\S(w) AN(w)[As(w) + AN(m)] dw =
~T ~T
T @250 1 Dy 2500 1 i " e 902G (@) Dy @) A8 0) T+ a1) H (102 @) D @) AT @) ]
== dud
&u (1) (1-e) AJ() + [A (W) - AW ] + Dgw) = AW]
[(1-e % @12 @-28@ ] [1-e 2% @ 12 (@) 25w ] |
N D @ ASW@ 1D W) - Af@)] + —S18 it ., TN ==
g +‘.;. (1—85)7\18(00) +(1-€N) XIN(w) (1<) )\ls(w)+(l-eN) )\lN(w) o

o o e e
(l—es)Als(w) + (l—eN) )\lN(w) + [As(m) - )\s(w)] + [)\N(w) - )\N(w)]

1
g |

W

' :- e, e -1 (s} e 2 -1 e .
+ﬁ[ [Ag ) =20 ) TEAC0) -ACa) 441 ™ (L-e DA (W) TA(0) AR (W) T+0” (041) (1‘€s)kis(“)[*s(“)‘*s(“?]d

1@ (D (1-eIAT (@) + A (@)-ASW) ] + A (w)-Ag(w) ]

e o

(A.18)

Considering expression (A.18), we now make the following observations.

te st . . E . . . . . . - . - L. o
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e
An(m) - AN(w) >0 ; Vuwe Eu
w < 1> 12w < (™ > W2 THae) 8@ Dy - AW ] <
< (\H-l)-z(l.l+l)(l-€N) A:N(w) [AN(w)—Ag(w)} ; ¥ we Eu

e
A -2 (W >0; ¥vuwe E,

- _
' i w < 1> v 2 < @ > Vo e ) 3 @ D _@- 25w <
-2 o e
< (u+l) (V+1)(l—€s) Als(w) [AS(Q)-As(w)] ; vue B
e e
- AW - Afw) 20, )\s(w) =AW >0
; vuwe ESNES
: (1-€ )2° (W) > pQ-e) A° (w) (1-,) A9 (W) > v(1-€) A® (w) e
- *s”1s HET=ER) A By A4y Vit=Eg) Al
. (A.19)
) ( 1(1-€ )28 @ 12D @ -2EW) ] a1 o .
- ~ < (V+l) (1—es)kls(w) [AN(w) - lu(w)] <
| (1-e )X, @) + (Q-ePA) (W)
-2 o o e
< (vH1) T1A-e A @) +H(1-e A (W TIA (W) -A (W) ]
— < | ;v e ECNES
. 2
[1-e IAT (@ 17X _(W)-A%(w) ]
L3 s & < DTS @ D@ - ASW] <
\(1-£ )25 @) + (1-e)AT (@) AR s s
o -2
- < () [l S)A: s(‘”)*(l'eu))‘iu(‘”) 1A (W) -A:(w) ]
L= . C
_':: To simplify our notation', we eliminate the integration variable w, and we denote:
A e A e A o
X = As")\s, Yy = AN—}\N’ zl = (U+1)(1‘€N))\1N
s VW (A.20)
p A . 330 A . _ o - o
z, (v+1) (1 ss)xls, Z, (1 Esnls + 1 EN)AlN
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A.9

In view of the conditions in (A.19) and the notation in (A.20), we obtain from

(a.18):
Ui ™ - -
A -1 A€ 3€ 1€ 428 -1 xy + (V+1) ? y + (u+l) 2 xz)
+ -
Aty [Ag )“N] sAN [}\S+AN] = x+y+z ¥
-7 - (3 1
u
-2 -2 -2 -2
xy+(V+l) “y z3+(u+1) X z, xy + (V1) “y z, + (u+l) “x z,
+ +
x+y+z3 x+y+z2
c c
Eu ﬂ E\) E\)
(A.21) }
We observe that all the integrands in the upper bound in (A.21) have the form: .
L
) 1
wiow, + (D)2 w w + D) v v
£lu,, wy, wy) & L2 2 3 L 3 (A.22) )
1* "2 73 w1+w2+w3 * A

The function f(wl, w2, w3) above is concave in the region determined by

+ >
Wy tw, + vy 0, and vy

is some w set such that the above conditions for concavity hold, (where wl, w

> 0 ; for all v and M such that gy v < 1. Therefore, if

2° Y3

functions of w) an application of Jensen's inequality results in the following expression:

f f(wl, Wy, w3) dw < f(f wis / wz,f w3) (A.23)
Q Q 9] Q

Considering now the functions defined in (A.20), selecting 2 = [-m,w], V=X, W, =y,

w, =2, *1_ +2, -1 +2z, -1 , and applying (A.23) to (A.22), we obtain: ‘
3 1 l:"J 2 E\) 3 E: n E: P
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| sl i R S A I il i UL L Sy S S S A
. et STt T - T .

™ T 2 (T ™ 2 (" T

m Ul I x [ y+(v+1) j y -J w3+(|.1+1) J’ x -f vq
i -1 e,e;.e . e.~1 < m ~ i T &
! j )‘sAN[}‘sH‘N] _s As)‘N[AsH‘N] < m T 1r =

-7 - S X + S y + ‘ Vg

= -7 -7
T i

m ; since s X = g y=0 (A.24)
- -7 -7

We have now proved that (A.1l) and (A.2) are sufficient solutions for the optimiza-

tion problem (3D). Those solutions clearly satisfy the condition for equality in

expression (9); thus they are also sufficient for the supremum of em(js, iN) on 1

F' x F! _ , with no restrictions on eigenvectors.
s,es N,E:N

o Part 2 . : | ]
Under the conditions (10) in the theorem, the classes F; e and Fﬁ ¢ are mon-
- ’"s TN
v ] .
' empty, and Fs,esC FL,ES’ FN,E fal FL,EN' Furthermore, the restrictions through which
the classes F; € and FI:I g are defined do not imply restrictions on the eigenvectors
’"s *UN
of the corresponding spectral density matrices. Therefore, for any sets {Ais(w);l_giin}

DRNDY Y TP

| | and {XiN(w);liiin} of ordered eigenfunctions, the eigenvectors of the corresponding

spectral density matrices £s(w) and _gN(w) can be selected arbitrarily for the supremum

ratataca s B ea st

of em(_gs, EN) on F;’Es x F;‘@N' Let now _f_s(w) be some spectral density matrix in

' v,
= FL,E:S - Fs,es’ and let £N(w) be some spectral density matrix in FL,EZN - FN,GN’ where
if A and B are two sets, A-B denotes the set with elements in A but not in B. Let

{)\is(w); 1<i<n} and {AiN(w); 1<i<n} be the sets of ordered eigenfunctions of the
matrices _f_s(w) and EN(w) respectively. Then, for every i, there exist Ai(m) and Bi(w)

- < (1= ° . < o .
subsets of [-m,7m], such that Ais(w) ( es) Als(w), ¥ we Ai(w) and )\:m(w) (l—e:N))\lN(m),
vV we Bi(w); where An(w) and Bn(w) are necessarily nonempty, and for i < n some of the
sets Ai(w) and Bi(w) may be empty. For any i such that Ai(w) is nonempty, we construct

* *
a new eigenfunction )«is(w), such that )\is(w) = Ais(w); ¥ we([-n,ﬂ]~A1(m)), and
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S A1l

A; (w) = (1-€ ) Ais(m); ¥ we Ai(w)' Similarly, we construct the new eigenfunction
s s

* * = . - - * = (1- o .
AiN(w), such that AiN(w) = AiN(w), ¥ we ([-7,7] Bi(“)) and AiN(w) (1 eN) AlN(w),

* *
¥V we Bi(w). The so constructed sets {Ais(w); 1<i<n} and {AiN(m); 1<i<n} correspond

i to spectral density matrices that are contained in F; ¢ and Fﬁ ¢ . Trespectively.
' ::. stg N
v In addition, we have:
| m -1
Do Ui n L1 n _ -1
; -1
: < w dw <
: e (£, £) < (21) j [ e +[§ Ay )] )
: - i=1 i=1
-1

, ™ n -1 n -1
d -1 * ) *
\ < (2m E A (w) + E A, (w) dw
L is | iN
- -1 i=1 i=1
e

s where the right hand side of the double inequality above is due to the fact that

-1,-1

[x-'1 +y ] increases monotonically with increasing x and y, and due to the fact

that the {A:s(w); 1<i<n} and {A:N(w); 1<i<n} constructions have this effect as compared
II to the sets {Ais(w); 1<i<n} and {AiN(w); 1<i<n},

NS Thus, it is sufficicent to optimize e (£ , £ ) on F' x F!' .
o m—s N s

. Proof of Theorem B

As in part 2, in the proof of theorem A, we have again that it is sufficient to

]
optimize em(gs, £.) on Fs,e x FQ'
is sufficient for the optimization problem (4A). Then, we will show that this solution

Here, we will first show that the solution (B.1)

k=
. is also sufficient for the supremum of e (£ , £) on F' xF_.
\ ) m—s —N s,es Q
: Let As(w) and AN(w) be as in (A.7). Then, for any admissible sets {Ais(w)},
{Aiu(w)}, we have that (A.21) holds. Thus, (A.21) also holds if {Ais(ub} and
{AiN(w)} are substituted by {A:s(uo} and {Ain(w)} in (B.1l). For simplicity in notation,
i we will denote ci as cj 3 for all j, and as in the proof of theorem A, we will prove
- that:

\

e e ., ~ [ . L R PR SO . e e e S T e T s TN T e PR
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A.12 )
1r m j'.
. I D + A 1™ aw < S @ AW DEW + A w1 dw (A.25) y
. - -T j
. T
A
Indeed, from the definition of A:(w) and A;(w) in (B.1), we easily obtain: .
. 1) m '1
> s D lw + 2 w1t aw - s A% (w) AS(w) [AS(w) + A%(w)]T aw-
8 N s N s N
y - -7
- k As(w) AN((n) 1 G4 X% _
~ - Z (f e o R Nl e +x.) (A.26)
3=0 s N ) i3

_,_ Applying the lemma to expression (A.26), e obtain.

m

m
-1 _
g Dlw + 35w aw - S AS@ ASW W) + A5 Tdw <
- o
. A A (w)
@ - f W) dw
k J;i s Aj N L e x
= Z [ X (wdw + AN(w) aw -~ " e ix, |~
j=0 ﬁ s A 3773
A 3
.
-1 : ¢ 74 ‘1% -1 =L < Gy, - x,)
=0 Z(cﬂ “c+x)-n Z c.Ax)(c Hy ) -
= 373 33 = b I M B
j=0 4=0 »
" 4
-1 Z cj (yy - %) -1 Z cjz (yq - x)
=n 4+ n o
i (c,tuc,) (c +y, -x, +ic,) S — =
| Jrpe,2x® 3 ¥ 3731 jie <x° (cj+xj)(cj+yj xj+xj) N
| 7 33 -
. ]
‘ (A.27) ]
t :.:\
b .
; E:, 3 where yj é I As(w)dw (A.28) :J
AJ

................
............................
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A3
Since A_(w) > (1-€)) AJ ()
5 0 _ 0 ; i P
YiZ¥y o Yy T2 J:Hey <
). . (A.29)
IR IEEE
370 =0 "

Now, the expression in (A.27) can be bounded from above by

k e+l e, (y.-x,)
-2 173
2 (u+1) (u+1) cj+(yj-x )

h|

which, due to corollary 1 in the paper, is bounded from above by:

k k '
Z (U+1)c. Z (y:—x.)
-1 - = 33
() 2 40 ] [1;0 ] (A.30)
Z ey + 3 (y;7x))
= j 0

Due to (A.29), the expression in (A.30) equals zero, and (A.25) is now proved. That
proves that (B.1l) is a sufficient solution for the optimization problem (4A). But,
this solution élearly satisfies the conditions for equality in (9). Thus, it is also

)onF' x F

sufficient for the optimization of e, (f g Q°
€s

Proof of Theorem C

As in the proof of theorem B, we will prove that (A.25) holds, for the A:(w),
A;(w) selections as in (C.1l), and for all admissible {)\s(w), AN(m)} pairs.
Since, Kk

AgyN\ Ay =95 v 18y, U Agy = [-m,m]
j=1

m
Ayg N Ay = 95 ¥ 14 ,jul Ayy = [-m,m]

.............................

................




RIS TR R e T

A.l4

it is clear that the km sets Asi[] ANj 3 i=1,...,k,j=1,...,m are mutually exclusive

and exhaustive. Thus,

k

m
I A M@ D@ + A @17 aw= D f 2 A @ D@ + A1
- . j=1 ASj

j As(m)dw +J~ AN(w)dw -1 A (w) duw

A_. si {5 Ja N A N
izj s(w)dw+JSJ>\(w)dw z: -1 "‘l N

1 A N j=1n csj+ I >\ (w) dw
453 s3 1 AN Ay

m

= S A:(w) A;(m) [A:(w) + ;\g(w)]‘l dw (A.31)
-

; where the inequality in (A.31) is due to the lemma.
Thus, the inequality (A.25) holds in this case, and the proof is complete, for
the problem (5A). The solution satisfies the condition for equality in (9), thus it

is sufficient for the optimization of e (f , £) on F. x F_ .
m—s —N Qs QN

Proof of Theorem 1

a.

Expressioh (26) is easily derived, by substitution of solution (A.l) in theorem
A, in (21).

Let now condition (12) be satisfied. Then, directly from solution (A.2) in
theorem A, and from the proven (in the proof of theorem A) fact that pv <1,

we have:

—— _..._‘y-r__..—‘_f_..u_m--.—f,:-_._'--;-»,-_-q_w_-,v,:.l.—_, - T s T e s T T T e T T e

Al bl oka:
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A.15 <

o 1
(1-€ )\° (w) ’
[1+u]—1 ;W 2 is < 5
i (1‘€N))\1N(UJ) __1]
' A8 () (1-€ )2° (w) B
—:E——-—;——— = \)[1+\)]_'1 W s 5 is z_v_l (A.32) ﬁ
As (w) +AN(w) (l—eN) AlN(w) J
o o -
] (A-e A, (W) Cew e (1-€ )2, (W) o 1
(1-e 2] (@ +(1-€ AT (@) (1€ )A3 (w) %
2
(1-e )% (w)
TeR 3w > is <
> (1-eN) AlN(w)
P
A% (w) (1~ )2 _(w)
s - -1 . . s 1s -1
Fontw ) ey T
g WAy (1-ey Ay (w
; e 15, aepw
s W e U \Y
o 0 (o]
(l-es)kls(w)+(l—€N)AlN(w) (l—eN)AlN(w)

Now, due to 4 V < 1, we have:

(1-€ AT (W) ‘ -1
\,[1+\,]‘1 < min ([1+u]"1 , N 1N ) . o
- (1-es)A§s(w)+(l—eN)A(1’N(w) 4
(1-¢ )2 (w)
s w:p< 8 (1’3 < vl (A.34)
(l—eu)lm(w)
_ (1-¢ A% (w)
. Hll+u] 1. min ([1+\:]'1 ’ S L L S )
E- (l-es))\ls(w)+(l—eN)AlN(w)

(1-e )27 (W)  _ .
;W u< s ls <v1 (A. 35)
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o A.16 .
- !
:E From (A.32), (A.33), (A.34), and (A.35), we clearly obtain. ;}
e o . .
l XN (w) -1 (1-€s ) Als () -1 ;i!
min (—e——:——) = V[1+Vv] ; achieved at all w: ° Z \Y (A.36)
W \ A (WA (w) (1-e)A; g ()
N 2% () 1 (1-e )A7_(®)
- min (—e——g-——e——- = ufl+u) ; achieved at all w: 5 Lwu (A.37)
+ -
- w As(w) AN(w) (1 eN)llN(w)
Due to the fact that the infimum in (21) is a linear programming problem, and
e due to (A.36) and (A.37), we easily obtain by substitution the result in (27).
o b.
[
By substitution of the solution (B.l) in theorem B, we obtain:
- e k
. A (w) c
| — 5 . —4_ 1 W (a.38) "
Ae(w)+Ae(w) cj+x, Aj )
. s N j=0 J . 7
2% (w) k < ]
! . s e - z : .c__.‘l_+x lA (w) (A.39) :‘4
: M OL MR M B 4
]
From the definition of the xj's in theorem B, and from (A.38), we obtain: E
-
A;(w) o -1 -1 :
min (-—e—-—e-——) = [1 + max (Xj Cj ) (A. 40)
- w As(w)+AN(w) j:x%uc

Finally, due to the fact that the infimum in (21) is a linear programming

problem, and due to (A.40), we obtain the result in (28).

C.

’
‘. "L‘ PO

Without lack in generality, we will consider the special solution (C.2), in

re0,
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A.17 -

- s
= 1
theorem C. We easily find then, by substitution: n

_ =
AT (w) c
.l "é“'_N—e"— - [1 + - sj ]; w e Asj (A.41)
As(w)+AN(w) P eyp M ( An!_n Asj)u—l ( ANL)
=] :
N -1
A [1 -1 i @A, ,na) -I(AM)] weEA (A.42)
—_—= + ¢ cyp M u 2 ; .
e e sj NE N Tsj sj
3 As (w) +AN (w) =1
= From (A.41), (A.42), and (21), we easily find the expression (29), by direét
' substitution.

Proof of Theorem 2

O\ Let us first consider the conditions (10) in theorem A, where wl and W, are
@ given by (3A). From those conditions, we directly obtain.
|-

ii . ‘ 7 1)1 “’]
! [o] - |
1 | €g > {1 + 2m ws[f n Als(m) dw - 27w wos] 4
! ._-_: - ‘1
o (A.43) S
} . 7 -1 5!
i (o] - -1 -
ey 2 {1 + 21 wN[ f n AJ W) dw - 27 woN] } _ -
-1 ~,:‘
- T
) Let us now define, :
- 2
A, -1 -1 N
y = (2m) [wos + ssll z-:s] Ws] -‘.\;.‘
A -1 -1 J
x 2 (2m)7 W+ eg(l-eg]™" Wyl --‘
£ 20 2° W (A.44)
B A Lo =
} £,w) 2 n A7 (W) <
P .
| .

™
F(y,x) a f max (y fl(w), x fz(w)) dw
-7

''''''''''''''''''''''
---------

---------
-------




Then, the quantities y, x defined above are monotonically increasing with €gs €

respectively, the conditions (A.43) in terms of y and x become,

n

y > (21r)"2 / n)\(l’s(w) do
-7

(A.45)
™
x> (2m)~2 [ g (W) dw
™
and the acceptable (es, eN) region corresponds to,
(v, x) : F(y, x) > 1 (A.46)

From the expression of F(y, x) in (A.44), it is clear that for the satisfaction of

(A.46), it is necessary that:

x £,(w) !
m;x max (1, W) -y / fl(w) dw > 1 (A.47)
-
;s where, due to conditions (10):
w
(A.48)

y[ fl(w)dw_<_1
L

From (A.47) and (A.48) we conclude that for the satisfaction of (A.46) it is

necessary that:

2

ol (] o o
-

x > [min (:1::;)][f fl(w) dwj -
-1

(A.49)

N

v, B A - .
4.& .LAA.LA-:-‘);_A I 3]

'L“uj

. “ Poe e e,
4 _J. rew )




.
g
s

-
‘..;

[y

.............................

S Ul it i St e St i g iur it i datt i e e s At A I RS R

A.19

For the satisfaction of both the conditions (A.45) and (A.49), we finally

require:

b -1 - r 2
x > [[ n A° (w)dw] - max (min g(w), (2m)™° p [/ n A° (w)dw])
- 1s w 1s
i -7
m

' T
-1 2
y 3[/ n A;N(w)dw] « max (min ghl(w), (21r)_2 D[/ n A:s(w)dw] )
~ -T

; where g(w) and D are given by (38). The regions [BN’ 1] and [Bs’ 1] are obtained

(A.50)

by substitution of the y and x in (A.44), in the conditions (A.50).

Let us now define,

ki
G(z) 2 J/r max (z fl(w), fz(w)) dw (A.51)
=T

Then, we can trivially write,

F(y, X) = x G (i—) (A.52)

We will define z =-§, and we will use z as a parameter. The breakdown curve

is determined by the equation
F(y, x) =1
In 8 parametrized form, this equation becomes,

x(z) = G—1 (z)

with (A.53)
y(2) = z L (2

Let us first study the function G(z); 0 < z <®w, We first define,

"' ';..I' L‘ '.. ) 2

-Ath ;- ‘.‘

)
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A.20
£f.(w)
), . 2
n and clearly,
D .
= Ez+dz — Ez ;) ¥z,dz>0 (A.55)

Due to the conditions satisfied by the function g(w) = fl(u)) f;l(w), we have that,

ﬁi:lo Ez+dz = Ez ; ¥z>0 (A.56)
’ Also, we can write:
-
o T
= G(z) = f [z fl(w) - fz(w) dw]-i- / fz(w) dw (A.57)
Ez -
" From (A.57), and due to (A.55) and (A.56), we easily find,
| 3 G(s) 2 pin  Hztdd=0) =f £(0) dw>0 ;%220
z dz 1 = Z
dz>0 E
z (A.58)
/ fl(w)d - fl(w) dw
; 2 E E
- —a——i' G{z) é £im ztdz iz z >0
’ 9z dz>0
Now, from (A.53) we find in a straightforward fashion:
= -1
dy(z) _ _, [ 3 ]
; ax(2) z - G(z) ™ G(z)
. (A.59)
: 2 2 G(z) [-a— G(Z)]
dy() _, _ 9z |
d*x(2) . 2 )2
2 [— G(z)] - G(2) | —= G(=z)
9z 3 2
z-

Due to expressions (A.58), we finally obtain:
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A.21

;::._

[~

(s -1

S 8- [] qwa] | AT ] (4.60)
E E

8 ’ ‘
d2 (2z)
¥z <o ;%z2>0 (A.61)
d x(z)

N

the theorem,

. Due to (A.60) and (A.61) above, we conclude that in terms of y and x variables,

the breakdown curve is monotone and concave and that (considering also (A.54)):

dy(z) O
e dx(z) | z=0
(A.62)
dyv(z) -
dx(z) | z > 0
;...
But z = 0 corresponds to €_= 1, and z > «® corresponds to t—:s = 1. Also, y and

X are monotonic with respect to Es and €N respectively. Thus, the conclusions in
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